p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.2C23, (C2×D4)⋊6C4, (C2×Q8)⋊4C4, C4○(C23⋊C4), C23⋊C4⋊5C2, (C22×C4)⋊4C4, (C2×C4).119D4, C23.3(C2×C4), C22.9(C2×D4), C42⋊C2⋊1C2, C4.9(C22⋊C4), (C2×D4).43C22, C22.7(C22×C4), C22⋊C4.10C22, (C22×C4).30C22, (C2×C4).5(C2×C4), (C2×C4○D4).2C2, C2.13(C2×C22⋊C4), SmallGroup(64,91)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.C23
G = < a,b,c,d,e,f | a2=b2=c2=e2=1, d2=b, f2=c, ab=ba, dad-1=ac=ca, ae=ea, af=fa, ebe=bc=cb, bd=db, bf=fb, cd=dc, ce=ec, cf=fc, ede=acd, df=fd, ef=fe >
Subgroups: 137 in 79 conjugacy classes, 39 normal (13 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C23⋊C4, C42⋊C2, C2×C4○D4, C23.C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C23.C23
Character table of C23.C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | -1 | -i | i | -i | i | -i | i | -1 | linear of order 4 |
ρ10 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | i | i | -1 | i | -i | -i | -i | -i | i | 1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | -1 | i | -i | i | -i | i | -i | -1 | linear of order 4 |
ρ12 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | -i | -1 | -i | i | i | i | i | -i | 1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | i | i | 1 | -i | -i | -i | i | i | -i | -1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | i | 1 | i | i | -i | -i | i | -i | 1 | linear of order 4 |
ρ15 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | -i | 1 | i | i | i | -i | -i | i | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | i | -i | 1 | -i | -i | i | i | -i | i | 1 | linear of order 4 |
ρ17 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 5)(4 8)(10 12)(13 15)
(9 11)(10 12)(13 15)(14 16)
(1 5)(2 6)(3 7)(4 8)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 13)(2 14)(3 11)(4 10)(5 15)(6 16)(7 9)(8 12)
(1 4 5 8)(2 3 6 7)(9 14 11 16)(10 15 12 13)
G:=sub<Sym(16)| (1,5)(4,8)(10,12)(13,15), (9,11)(10,12)(13,15)(14,16), (1,5)(2,6)(3,7)(4,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,13)(2,14)(3,11)(4,10)(5,15)(6,16)(7,9)(8,12), (1,4,5,8)(2,3,6,7)(9,14,11,16)(10,15,12,13)>;
G:=Group( (1,5)(4,8)(10,12)(13,15), (9,11)(10,12)(13,15)(14,16), (1,5)(2,6)(3,7)(4,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,13)(2,14)(3,11)(4,10)(5,15)(6,16)(7,9)(8,12), (1,4,5,8)(2,3,6,7)(9,14,11,16)(10,15,12,13) );
G=PermutationGroup([[(1,5),(4,8),(10,12),(13,15)], [(9,11),(10,12),(13,15),(14,16)], [(1,5),(2,6),(3,7),(4,8),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,13),(2,14),(3,11),(4,10),(5,15),(6,16),(7,9),(8,12)], [(1,4,5,8),(2,3,6,7),(9,14,11,16),(10,15,12,13)]])
G:=TransitiveGroup(16,101);
(2 16)(4 14)(6 9)(8 11)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(2 16)(3 13)(5 12)(8 11)
(1 10 15 7)(2 11 16 8)(3 12 13 5)(4 9 14 6)
G:=sub<Sym(16)| (2,16)(4,14)(6,9)(8,11), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (2,16)(3,13)(5,12)(8,11), (1,10,15,7)(2,11,16,8)(3,12,13,5)(4,9,14,6)>;
G:=Group( (2,16)(4,14)(6,9)(8,11), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (2,16)(3,13)(5,12)(8,11), (1,10,15,7)(2,11,16,8)(3,12,13,5)(4,9,14,6) );
G=PermutationGroup([[(2,16),(4,14),(6,9),(8,11)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(2,16),(3,13),(5,12),(8,11)], [(1,10,15,7),(2,11,16,8),(3,12,13,5),(4,9,14,6)]])
G:=TransitiveGroup(16,112);
(1 16)(2 4)(3 14)(5 7)(6 11)(8 9)(10 12)(13 15)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 14)(2 15)(3 16)(4 13)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 10)(2 6)(3 5)(4 11)(7 14)(8 13)(9 15)(12 16)
(1 9 14 6)(2 10 15 7)(3 11 16 8)(4 12 13 5)
G:=sub<Sym(16)| (1,16)(2,4)(3,14)(5,7)(6,11)(8,9)(10,12)(13,15), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,14)(2,15)(3,16)(4,13)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10)(2,6)(3,5)(4,11)(7,14)(8,13)(9,15)(12,16), (1,9,14,6)(2,10,15,7)(3,11,16,8)(4,12,13,5)>;
G:=Group( (1,16)(2,4)(3,14)(5,7)(6,11)(8,9)(10,12)(13,15), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,14)(2,15)(3,16)(4,13)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10)(2,6)(3,5)(4,11)(7,14)(8,13)(9,15)(12,16), (1,9,14,6)(2,10,15,7)(3,11,16,8)(4,12,13,5) );
G=PermutationGroup([[(1,16),(2,4),(3,14),(5,7),(6,11),(8,9),(10,12),(13,15)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,14),(2,15),(3,16),(4,13),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,10),(2,6),(3,5),(4,11),(7,14),(8,13),(9,15),(12,16)], [(1,9,14,6),(2,10,15,7),(3,11,16,8),(4,12,13,5)]])
G:=TransitiveGroup(16,120);
C23.C23 is a maximal subgroup of
(C2×D4).Q8 C42.6D4 M4(2)⋊5D4 C42.8D4 C23.4C24 C23.7C24 C23.9C24 (C2×D4)⋊8F5
(C2×D4p)⋊C4: C42.5D4 M4(2).30D4 (C2×D12)⋊13C4 (C2×D20)⋊25C4 (C2×Q8)⋊7F5 (C2×D28)⋊13C4 ...
(C22×C4p)⋊C4: C23.2C42 (C22×C8)⋊C4 C23.5C42 (C2×D4).24Q8 (C6×D4)⋊10C4 (D4×C10)⋊22C4 C23⋊F5⋊5C2 (D4×C14)⋊10C4 ...
(C2×D4).D2p: 2+ 1+4⋊4C4 C4○D4.D4 (C22×Q8)⋊C4 (C2×C42)⋊C4 M4(2)⋊19D4 C42.426D4 C4.(C4×D4) (C2×C8)⋊4D4 ...
C23.C23 is a maximal quotient of
C42.371D4 C42.393D4 C42.394D4 C42.42D4 C42.43D4 C42.44D4 C42.395D4 C42.396D4 C42.372D4 C42.375D4 C42.404D4 C42.55D4 C42.56D4 C42.57D4 C42.58D4 C42.59D4 C42.60D4 C42.62D4 C42.63D4 C24.162C23 C4×C23⋊C4 C24.169C23 C24.174C23 C24.175C23 C24.176C23 C23⋊F5⋊5C2 (C2×D4)⋊8F5 (C2×Q8)⋊7F5
(C2×C4).D4p: C42.403D4 C42.61D4 (C2×D12)⋊13C4 (C2×D20)⋊25C4 (C2×D28)⋊13C4 ...
(C2×D4).D2p: C24.165C23 C24.167C23 C23⋊C4⋊5S3 (C6×D4)⋊10C4 C23⋊C4⋊5D5 (D4×C10)⋊22C4 C23⋊C4⋊5D7 (D4×C14)⋊10C4 ...
Matrix representation of C23.C23 ►in GL4(𝔽5) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
1 | 1 | 0 | 4 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 1 | 4 | 3 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 1 | 0 |
1 | 1 | 4 | 3 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 3 | 0 | 0 |
2 | 0 | 0 | 0 |
3 | 3 | 2 | 4 |
2 | 0 | 3 | 3 |
3 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
G:=sub<GL(4,GF(5))| [1,0,0,1,0,1,0,1,0,0,4,0,0,0,0,4],[0,1,1,0,1,0,1,0,0,0,4,0,0,0,3,1],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[0,1,0,0,0,1,1,0,1,4,0,0,0,3,0,4],[0,2,3,2,3,0,3,0,0,0,2,3,0,0,4,3],[3,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3] >;
C23.C23 in GAP, Magma, Sage, TeX
C_2^3.C_2^3
% in TeX
G:=Group("C2^3.C2^3");
// GroupNames label
G:=SmallGroup(64,91);
// by ID
G=gap.SmallGroup(64,91);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,158,963,730]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=e^2=1,d^2=b,f^2=c,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,a*f=f*a,e*b*e=b*c=c*b,b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e=a*c*d,d*f=f*d,e*f=f*e>;
// generators/relations
Export